A Decision-Based Modified Total Variation Diffusion Method for Impulse Noise Removal

نویسندگان

  • Hongyao Deng
  • Qingxin Zhu
  • Xiuli Song
  • Jinsong Tao
چکیده

Impulsive noise removal usually employs median filtering, switching median filtering, the total variation L1 method, and variants. These approaches however often introduce excessive smoothing and can result in extensive visual feature blurring and thus are suitable only for images with low density noise. A new method to remove noise is proposed in this paper to overcome this limitation, which divides pixels into different categories based on different noise characteristics. If an image is corrupted by salt-and-pepper noise, the pixels are divided into corrupted and noise-free; if the image is corrupted by random valued impulses, the pixels are divided into corrupted, noise-free, and possibly corrupted. Pixels falling into different categories are processed differently. If a pixel is corrupted, modified total variation diffusion is applied; if the pixel is possibly corrupted, weighted total variation diffusion is applied; otherwise, the pixel is left unchanged. Experimental results show that the proposed method is robust to different noise strengths and suitable for different images, with strong noise removal capability as shown by PSNR/SSIM results as well as the visual quality of restored images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Enhanced Median Filter for Removing Noise from MR Images

In this paper, a novel decision based median (DBM) filter for enhancing MR images has been proposed. The method is based on eliminating impulse noise from MR images. A median-based method to remove impulse noise from digital MR images has been developed. Each pixel is leveled from black to white like gray-level. The method is adjusted in order to decide whether the median operation can be appli...

متن کامل

Fixed Value Impulse Noise Removal In Medical Image By Modified Un Symmetric Trim Mean Filter

In last decade medical image quality improvement most popular topic for research. There are many methods are present for improving medical images. In the field of medical image processing, digital images very often get corrupted by several kinds of noise during the process of image acquisition. In this paper, we will present a new method for removal of impulse noise and enhancing magnetic reson...

متن کامل

Improved Adaptive Median Filter Algorithm for Removing Impulse Noise from Grayscale Images

Digital image is often degraded by many kinds of noise during the process of acquisition and transmission. To make subsequent processing more convenient, it is necessary to decrease the effect of noise. There are many kinds of noises in image, which mainly include salt and pepper noise and Gaussian noise. This paper focuses on median filters to remove the salt and pepper noise. After summarizin...

متن کامل

A Modified Median Filter for the Removal of Impulse Noise Based on the Support Vector Machines

In this work we present a new approach for the median filter. We modify this nonlinear filter used in impulse noise removal by applying it only to the noisy pixels and by using a different pixel as output of the modified filter. The decision between the noisy and no noisy pixels is implemented by using the Support Vector Machines classification. We use this new classification tool because of it...

متن کامل

An Enhanced Two-Stage Impulse Noise Removal Technique based on Fast ANFIS and Fuzzy Decision

Image enhancement plays a vital role in various applications. There are many techniques to remove the noise from the image and produce the clear visual of the image. Moreover, there are several filters and image smoothing techniques available in the literature. All these available techniques have certain limitations. Recently, neural networks are found to be a very efficient tool for image enha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017